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Abstract—In this paper, we propose an image pyramid-based
noisy energy function evaluation method for the local search
technique simulated annealing. The method is primarily designed
for the optimization of image segmentation algorithms, and
it maintains solution quality with significantly reduced time
requirement. The strategy to select the proper image pyramid
levels during the search is theoretically determined via adapting
results regarding evaluation in simulated annealing based on
imprecise measurements. As a demonstrative application, we
perform parameter-optimization of a segmentation ensemble
dedicated to the extraction of bone structures from CT images.

Index Terms—ensemble-based system, segmentation, noisy
evaluation, image pyramid

I. INTRODUCTION

Optimization of a system having numerous free parameters
regarding a complex energy function is a very challenging
task. Even if we can transform the problem to a finite discrete
one via e.g. quantizing and limiting the domains of the
parameters, the number of possible parameter settings grows
exponentially with the number of the parameters. Accordingly,
an exhaustive search for the optimal parameter setting soon
becomes completely impractical. Moreover, the more efficient
stochastic search approaches may still require too much time,
especially if the evaluation of the energy function itself is
expensive. In this paper, we address this issue by suggesting a
special type of noisy evaluation [1], [2] of the energy function
of simulated annealing (SA) [3], [4], which is a popular and
widely applied stochastic search strategy.

As a specific application, we consider an ensemble of
segmentation algorithms dedicated to the extraction of bone
structures from computer tomography (CT) images. The out-
puts of the individual segmentation algorithms are binary
images containing the candidate bone regions, which are
aggregated by majority voting. These algorithms have nu-
merous adjustable parameters, whose optimal settings may
differ, when a given algorithm is considered as an individual
approach or a member of an ensemble. The evaluation of
the ensemble performance for a given parameter setting is
done by comparing the aggregated segmentation results of the
ensemble for a training set with the corresponding manually
annotated ground truth. The comparison is carried out using
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the statistic intersection over union (IoU) [5], which is com-
monly considered for object detection. Thus, to compute the
energy function during the optimization process, an evaluation
over the whole training set should be performed at each search
step. A possible speed up during the stochastic search is to
apply noisy evaluation to determine the ensemble performance,
which means that the energy function is just approximated
instead of determined precisely. Naturally, to maintain the
convergence characteristics of the search method the noise
should be controlled. In the case of SA, it requires that the
noise should be normally distributed with mean 0 and its
variance should tend to 0 as the search advances [1].

In [6], we have already successfully presented how such a
noisy evaluation can be provided by selecting only subsets of
the training set with proper cardinalities instead of the whole
training set during the search. Now, as a novel contribution,
we consider an image pyramid representation of the training
set, where evaluating on lower resolution levels results in noisy
determination of the energy. Naturally, the lower the resolution
is, the larger the noise can be, since the segmentation results
using lower resolution images can be less precise. To meet the
theoretical requirements, we introduce a strategy to determine
the maximal allowed noise level in each iteration to control
the search. We will show that our method successfully reduces
the time requirement of the search while preserving solution
quality.

The rest of the paper is organized as follows. In section II
we give an overview of the individual segmentation algorithms
together with their adjustable parameters and the aggregation
strategy to construct an ensemble from them. The image
pyramid based evaluation method and the strategy to select
the appropriate scaling levels to guarantee the theoretical
requirements for the noise allowed in the evaluation during
the search is given in section III. Our experimental setup and
results regarding the performance of the proposed evaluation
method for the optimization of the segmentation ensemble will
be provided in section IV. Finally, some conclusions are drawn
in section V.

II. AN ENSEMBLE FOR AUTOMATIC BONE SEGMENTATION
IN CT IMAGES

In this section, we present an ensemble that performs
automatic bone segmentation in CT images. We describe
its member algorithms and the aggregation method used to



generate the output of the ensemble based on the individual
output of the members.

A. Basic notations
Let A1, A2, . . . , AN denote the individual segmentation

algorithms of the ensemble, and C1, C2, . . . , CN be their cor-
responding output. Let Ci(x, y) denote the pixels of the output
of Ai, where i = 1, . . . , N . Furthermore, let p1, p2, . . . , pn be
the parameters of the ensemble, where n is the total number
of parameters.

B. Member algorithms
Our automatic bone segmentation ensemble consists of five

algorithms, each of which has many parameters. However,
to gain a problem that is computationally reasonable, we
selected only those parameters for the later optimization that
significantly influence the ensemble output.

1) Algorithm A1: The algorithm A1 uses distance reg-
ularized level set evolution (DRLSE) [7] with thresholding
initialization and an edge-based active contour model. A1 has
the following parameters: the coefficient of the weighted area
term, the width of the Dirac δ function, the coefficient of the
weighted length term and a time-step parameter, which affects
the coefficient of the distance regularization term.

Among these parameters, the width of the δ function (p1)
is the most relevant regarding the accuracy of the output.

2) Algorithm A2: This algorithm is based on the dual
threshold technique described in [8] for extracting the pe-
riosteal and endosteal surfaces of the bones in two steps.
We have implemented only the first step of the method for
extracting the bone surface from CT images. The algorithm
A2, that applies thresholding and morphological operations,
has the following parameters: the number of thresholding
levels, the size of the median filter, and the parameters of
the morphological structuring elements. In the case of A2,
we chose the number of thresholding levels (p2) for the
optimization.

3) Algorithm A3: The algorithm A3 uses fuzzy C-means
clustering [9]. In the last step, Hounsfield-unit based thresh-
olding of the input image is performed, and the clustering
result having the least symmetric difference compared to the
Hounsfield output is selected.

The range for thresholding has been selected to be 500 to
900 HU [10]. A3 has the following parameters: the number
of clusters, the exponent for the fuzzy partition matrix, the
iteration number and the improvement value of the objective
function. Among these parameters, the number of clusters (p3)
and the exponent (p4) have the largest influence on the output.

4) Algorithm A4: The algorithm A4 [11] performs his-
togram matching, morphological operations, and finally active
contour segmentation using the method developed by Chan
and Vese [12]. A4 has the following parameters: the number
of thresholding levels, the parameters of the morphological
structuring elements, the weight of the smoothing term, and
the number of iterations for the active contour segmentation.
Among these parameters, the number of thresholding levels
(p5) has the most significant influence on the output.

5) Algorithm A5: This algorithm is a variant of the region
growing method [13] with multiple seed points. It compares it-
eratively the intensity of each unallocated neighboring pixel to
the mean of the already segmented region until the difference
of these values becomes larger than a threshold. Initial seed
points are selected using the histogram of the input image,
and the similarity threshold is automatically estimated using
the variance of the input image. A5 has two parameters: the
number of initial seed points, and a correction factor of the
similarity threshold, of which we chose the latter (p6) for the
optimization.

In Table I, we summarize the adjustable parameters of the
ensemble members.

TABLE I
ADJUSTABLE PARAMETERS OF THE ENSEMBLE MEMBERS.

Alg. Parameter description Range

A1 width of δ function p1 ∈ {0.01, 0.21, . . . , 2.01}
A2 thresholding levels p2 ∈ {2, 3, . . . , 5}
A3 number of clusters p3 ∈ {2, 3, . . . , 7}
A3 exponent p4 ∈ {1.01, 1.21, . . . , 3.41}
A4 thresholding levels p5 ∈ {2, 3, . . . , 5}
A5 correction factor p6 ∈ {0.8, 0.9, . . . , 1.2}

C. Aggregation method

As the aggregation method to obtain the output of the
ensemble, we chose classic majority voting. That is, the pixel
values of the ensemble output C is determined as

C(x, y) =

{
1, if

∑N
i=1 Ci(x, y) ≥

[
N
2

]
0, otherwise

, (1)

where N = 5 is the number of member algorithms.
See Fig. 2 for examples of the output of the individual

algorithms and the ensemble for a CT image.

III. ACCELERATED PARAMETER OPTIMIZATION USING
IMAGE PYRAMID-BASED NOISY EVALUATION

In this section, we present a novel image pyramid-based
noisy energy function evaluation method for the parameter
optimization of image segmentation ensembles that reduces
the time requirement of SA while preserves its convergence
properties.

A. Simulated Annealing in Presence of Noise

Simulated annealing is a local search strategy [3], [14]
that is widely applied to address difficult combinatorial op-
timization problems. The main feature of SA is that it can
escape from local optima by allowing moves that deteriorate
the energy function value with a probability depending on
a control parameter and the energy function difference of
the candidate and the current solution. SA assumes that the
energy of a solution can be determined exactly; however, the
evaluation of a solution is often subject to noise in real-life
problems.



Considering discrete search spaces and assuming that in
the k-th (k ∈ N) iteration the noise is normally distributed
with mean 0 and variance

(
σ(k)

)2
> 0, Gelfand and Mitter

proved [1] that SA using noisy evaluation exhibits the same
convergence properties as using exact energy values, if the
standard deviation σ(k) of the noise is dominated by the
temperature T (k) in the k-th iteration for each k, that is, when

σ(k) = o
(
T (k)

)
. (2)

Next, we will describe how the criterion defined by (2) can
be exploited to accelerate the parameter optimization of an
image segmentation ensemble using image pyramids.

B. Image Pyramid-based Noisy Evaluation in SA

In the case of ensembles, the more parameters they have,
the larger the training set required is to find their optimal
parameter setting and to avoid overfitting. However, consid-
ering large training sets, evaluating the mean performance of
the ensemble with a parameter setting can be computationally
expensive even using simple cost functions. Therefore, we
propose to estimate the energy function value E of SA at
different downscaling levels of the original ground truth and
the aggregated output of the ensemble during the SA process.

1) Nearest neighbor image pyramid: We refer to a collec-
tion of L ∈ N hierarchically downscaled versions of an image
as an L-level image pyramid, in which the higher the level l
(l ∈ 0, 1, . . . L − 1), the smaller the image resolution is. See
Fig. 1 for a visual explanation of the construction.

The most common method to construct image pyramids is
the Gaussian pyramid [15], where levels of the pyramid are
built by convolving the original image with a Gaussian-like
averaging filter followed by a subsampling step. However, in
our case the images are binary masks, therefore to preserve
sharp boundaries, we use the nearest neighbor method for
simple subsampling. That is, the pixel values of a level are
defined to match the original pixel whose center is the nearest
to the sample position.

2) The effects of downscaling: Assuming that the cost of
calculating E is proportional to the resolution of the input
images, the calculation of the energy function estimate Êl

over the l-th level version of the input images (with an
associated scaling factor γl) has 1/γ2l times lower cost than
the calculation of E; however, using Êl introduces noise in
the evaluation. The noise dl originating from using the l-th
level version of the input images can be determined as

dl = Êl − E. (3)

This noise may cause SA to consider an inferior state as
superior because of the imprecise evaluation of the energy
function. That is, the stronger the noise, the more random the
search. For this reason, a suitable strategy to control the noise
is required.

Fig. 1. Image pyramid

3) Downscaling level selection strategy: To ensure the
convergence of SA, we have to apply a strategy to select
the appropriate downscaling level l in each iteration k to
control the standard deviation of the noise σ(k)

d according to
the temperature T (k), as described by (2).

First, we have to determine the maximum allowed value of
σ
(k)
d for a given temperature T (k). Using (2), we get that

lim
k→∞

σ
(k)
d

T (k)
= 0 (4)

must hold.
To maintain the limit in (4), the sequence

{
σ
(k)
d

}
has to be

decreasing such that lim
k→∞

σ
(k)
d = 0 and σ(k)

d < T (k) for each
k ∈ N.

Based on the above conditions, a sufficiently simple general
form of σ(k)

d that maximizes its value considering a given T (k)

can be given as:

σ
(k)
d = T (k)(1− ε)k with 0 < ε < 1. (5)

The next step to construct our strategy is to determine the
dependence of σ(k)

d on the downscaling level l.
Using a downscaled version of the images of the training

set during the evaluation may result in significantly different
noise for different energy functions. In some cases, it can be
straightforward to determine the theoretical maximum value
of σ(k)

d , while for more complex energy functions it becomes
a difficult problem. However, in the case of natural images
the empirical standard deviation of the noise σd,l for a level l
is expected to be much lower than the theoretical maximum.
Therefore, we propose to estimate σ(k)

d for each level of the
image pyramid by measuring the value of σd,l on the ground
truth used for the evaluation.

Having σd,l measured for each level l of the image pyramid,
we can determine the highest level l (i.e. the lowest resolution)
where σd,l is less than or equal to the maximum allowed σ(k)

d

for each temperature level T (k).



(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Examples of the algorithm outputs, the aggregated output of the ensemble, and the corresponding ground truth: (a) output of A1, (b) output of A2,
(c) output of A3, (d) output of A4, (e) output of A5, (f) ensemble output, (g) ground truth.

TABLE II
RESULTS FOR THE DATASET.

p1 p2 p3 p4 p5 p6 SE SP MCC ACC IoU t (seconds)

Individual evaluation test 1.61 4 3 1.61 3 1.2 0.8519 0.9984 0.8827 0.9920 0.8238 -

Exhaustive search training 1.81 4 3 1.21 3 1.2 0.9090 0.9970 0.9200 0.9932 0.8597 71343.7
(19.818 hours)

test 0.8588 0.9980 0.8826 0.9919 0.8235 -

SA training 0.21 4 3 1.21 3 1.2 0.9085 0.9970 0.9197 0.9931 0.8591 137.3

test 0.8583 0.9980 0.8823 0.9919 0.8230 -

SA with
noisy evaluation

training 0.21 4 3 1.41 3 1.2 0.9021 0.9975 0.9201 0.9933 0.8589 48.9

test 0.8509 0.9984 0.8821 0.9919 0.8226 -

Next, we present our experimental setup and our results to
evaluate the performance of the proposed method.

IV. EXPERIMENTAL RESULTS

In this section, we describe the methodology used to assess
the performance of the proposed image pyramid-based noisy
evaluation method, and present our quantitative results, with
highlighting how the downscaling of the images affects the
optimization process.

A. SA Design Choices

1) Energy function: To evaluate the proposed noisy eval-
uation method, we have performed parameter optimization
of the ensemble presented in section II, with the aim of
efficiently finding the parameter setting that maximizes the
segmentation performance of the ensemble in terms of average
intersection over union IoU l [5], which is defined as the
number of common pixels of the ensemble output Cm,l and
the corresponding ground truth Gm,l for a given level l of the
image pyramid (l = 0, 1 . . . , L− 1, m = 1, 2, . . . ,M) over
the number of pixels in either of the two:

IoU l =

M∑
i=1

|Cm,l ∩Gm,l|
|Cm,l ∪Gm,l|

. (6)

To obtain a minimization problem, we define the energy
function as:

E = 1− IoU0

M
, (7)

and the energy function estimate for the level l as:

Êl = 1− IoU l

M
(8)

where L is the number of levels in the image pyramid and M
is the number of images in the training set.

2) Cooling schedule: For the implementation of the search,
we chose the exponential cooling schedule via

T (k) = T (0) αk with 0 ≤ α ≤ 1. (9)

We set the initial temperature T (0) = 1 and the base
α = 0.985. As the stopping criterion, we chose to have fixed
number of iterations, with kmax = 500.

3) Dataset: Our dataset consists of 300 private cross-
sectional CT images taken of the head of one patient and
the corresponding manually annotated ground truth masks. Of
course, the proposed method is not specific to any anatomic
location, it could be adapted for other CT images as well.
The dataset was randomly divided into two parts: a training
set with 200, and a test set with 100 images. The images
have the resolution of 512 × 512 pixels. The image pyramid
representation of the dataset was constructed using L = 16
levels, with corresponding scaling factor γl, defined as

γl = 1− l/L, l = 0, 1, . . . , L− 1. (10)

4) Realization of the noisy evaluation: Using the setup and
dataset described above, we have measured the standard devi-
ation of the noise σd,l for each level l over the ground truth of
the training set, and for comparison over the aggregated output
of the ensemble. For each level l, we used the followings
method:
• Downscale the ground truth and ensemble output images

with scaling factor γl to construct the corresponding level
of the image pyramids.
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Fig. 3. Measured standard deviation of the noise for the training set

• Upscale the images to the original size (with scaling
factor 1/γl).

• Determine dl as defined in (3). For this, compute E and
its estimate Êl for the level l as described in IV-A1 using
the scaled versions of the m-th image (for each m) as
Cm,l and the original images as Gm,l.

• Calculate σd,l.
It can be observed in Fig. 3 that the standard deviation of the
noise exhibits a similar trend in the case of both the ground
truth and the corresponding ensemble output.

Using (9) the maximum allowed value of σ
(k)
d can be

calculated as

σ
(k)
d = T (0) αk(1− ε)k with 0 ≤ α ≤ 1, and 0 < ε < 1.

(11)
Using (11), we were able to determine the required level l

for each iteration (temperature level) k. The maximal allowed
standard deviation of the noise σ(k)

d , the fitted noise σd,l, and
the corresponding downscaling levels l are shown in Fig. 4
and in Fig. 5, respectively.
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5) Quantitative results: In Table II, we list the individually
optimal parameter values, and the optimal parameter values
found at ensemble-level using exhaustive search, SA, and
SA with the proposed noisy evaluation method, along with
the corresponding average sensitivity (SE), specificity (SP ),
Matthews correlation coefficient (MCC), accuracy (ACC),
and IoU (IoU ) values of the ensembles using the training set,
as well as the running times (t) in seconds required for the
parameter optimization. The running time for the individually
optimal parameter setup and for the test set are omitted since
in these cases only evaluation is performed.

In order to assess the stability of the method, we performed
300 tests using both standard SA and SA with the proposed
noisy evaluation method. In Table III we include the average
figures of 300-300 tests. As it can be seen, the algorithm ex-
hibits a solid behavior for the stability of the search with small
differences in the average energy function values; however,
significant improvement in the time requirement is achieved.

TABLE III
PERFORMANCE COMPARISON BASED ON THREE HUNDRED RUNS.

IoU t (seconds)

SA 0.8248 119.5
SA with noisy evaluation 0.8200 39.6

Difference -0.0048 (-0.58%) -79.9 (-66.86%)

6) Implementation and hardware details: The algorithms
were implemented in Matlab. All detector outputs and ground
truth images represented as image pyramids are stored in
memory during the optimization process to reduce the time
required to find a solution. The reported running times exclude
the time required for loading the ground truth images and the
algorithm output that were computed offline, generating the
image pyramids, and other overhead. Results for the dataset
were acquired using a computer equipped with a 4-core 8-
thread Intel Xeon W-2123 processor and 16 GB DDR4 RAM.



V. CONCLUSIONS

In this paper, we have proposed an image pyramid-based
noisy energy function evaluation method for the local search
technique SA. Considering an image segmentation ensemble
designed to extract bone structures from CT images, we
showed that using the proposed method it is possible to reach
solutions with the same quality as using standard simulated
annealing, but with significantly reduced time requirement.

REFERENCES

[1] S. B. Gelfand and S. K. Mitter, “Simulated annealing with noisy or
imprecise energy measurements,” Journal of Optimization Theory and
Applications, vol. 62, no. 1, pp. 49–62, 1989. [Online]. Available:
https://doi.org/10.1007/BF00939629

[2] P. C. Schuur, “Classification of acceptance criteria for the
simulated annealing algorithm,” Mathematics of Operations Research,
vol. 22, no. 2, pp. 266–275, 1997. [Online]. Available:
http://www.jstor.org/stable/3690264

[3] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
[Online]. Available: https://doi.org/10.1126/science.220.4598.671

[4] S. Ledesma, G. Avia, and R. Sanchez, “Practical considerations for
simulated annealing implementation,” in Simulated Annealing, C. M.
Tan, Ed. Vienna, Austria: InTech, 2008, ch. 20, pp. 401–420. [Online].
Available: http://doi.org/10.5772/5560

[5] W. R. Crum, O. Camara, and D. L. G. Hill, “Generalized overlap
measures for evaluation and validation in medical image analysis,” IEEE
Transactions on Medical Imaging, vol. 25, no. 11, pp. 1451–1461, Nov
2006. [Online]. Available: https://doi.org/10.1109/TMI.2006.880587
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